Радиочастотные волны. Радиосвязь. Выводы на основе распространения и сложности формирования радиоволн

Если бы Максвелл не предсказал существование радиоволн, а Герц не открыл их на практике, наша действительность была бы совсем другой. Мы не могли бы быстро обмениваться информацией при помощи радио и мобильных телефонов, исследовать далёкие планеты и звёзды с помощью радиотелескопов, наблюдать за самолётами, кораблями и другими объектами с помощью радиолокаторов.

Каким же образом радиоволны помогают нам в этом?

Источники радиоволн

Источниками радиоволн в природе являются молнии – гигантские электрические искровые разряды в атмосфере, сила тока в которых может достигать 300 тысяч ампер, а напряжение – миллиарда вольт. Молнии мы наблюдаем во время грозы. Кстати, они возникают не только на Земле. Вспышки молний были обнаружены на Венере, Сатурне, Юпитере, Уране и других планетах.

Практически все космические тела (звёзды, планеты, астероиды, кометы и др.) также являются естественными источниками радиоволн.

В радиовещании, радиолокации, спутниках связи, стационарной и мобильной связи, различных системах навигации применяются радиоволны, полученные искусственным путём. Источником таких волн служат высокочастотные генераторы электромагнитных колебаний, энергия которых передаётся в пространство с помощью передающих антенн.

Свойства радиоволн

Радиоволны – это электромагнитные волны, частота которых находится в интервале от 3 кГц до 300 ГГц, а длина - от 100 км до 1 мм соответственно. Распространяясь в среде, они подчиняются определённым законам. При переходе из одной среды в другую наблюдается их отражение и преломление. Присущи им и явления дифракции и интерференции.

Дифракция , или огибание, происходит, если на пути радиоволн встречаются препятствия, размеры которых меньше длины радиоволны. Если же их размеры оказываются бόльшими, то радиоволны отражаются от них. Препятствия могут иметь искусственное (сооружения) или природное (деревья, облака) происхождение.

Отражаются радиоволны и от земной поверхности. Причём, поверхность океана отражает их примерно на 50% сильнее, чем сýша.

Если препятствие является проводником электрического тока, то какую-то часть своей энергии радиоволны отдают ему, а в проводнике создаётся электрический ток. Часть энергии расходуется на возбуждение электротоков на поверхности Земли. Кроме того, радиоволны расходятся от антенны кругами в разные стороны, подобно волнам от брошенного в воду камешка. По этой причине радиоволны со временем теряют энергию и затухают. И чем дальше от источника находится приёмник радиоволн, тем слабее сигнал, дошедший до него.

Интерференция, или наложение, вызывает взаимное усиление или ослабление радиоволн.

Радиоволны распространяются в пространстве со скоростью, равной скорости света (кстати, свет – это тоже электромагнитная волна).

Как и любые электромагнитные волны, радиоволны характеризуются длиной и частотой волны. С длиной волны частота связана соотношением:

f = c/ λ ,

где f – частота волны;

λ - длина волны;

c - скорость света.

Как видим, чем больше длина волны, тем меньше её частота.

Радиоволны разбиваются на следующие диапазоны : сверхдлинные, длинные, средние, короткие, ультракороткие, миллиметровые и децимиллиметровые волны.

Распространение радиоволн

Радиоволны разной длины распространяются в пространстве не одинаково.

Сверхдлинные волны (длина волны от 10 км и более) легко огибают большие препятствия вблизи поверхности Земли и очень слабо поглощаются ею, поэтому энергии они теряют меньше других радиоволн. Следовательно, затухают они также гораздо медленнее. Поэтому в пространстве такие волны распространяются на расстояния до нескольких тысяч километров. Глубина их проникновения в среду очень велика, и их используют для связи с подводными лодками, находящимися на большой глубине, а также для различных исследований в геологии, археологии и инженерном деле. Способность сверхдлинных волн легко огибать Землю позволяет исследовать с их помощью земную атмосферу.

Длинные , или километровые , волны (от 1 км до 10 км, частота 300 кГц – 30 кГц) также подвергаются дифракции, поэтому способны распространяться на расстояния до 2 000 км.

Средние , или гектометровые , волны (от 100 м до 1 км, частота 3000 кГц – 300 кГц) хуже огибают препятствия на поверхности Земли, сильнее поглощаются, поэтому гораздо быстрее затухают. Они распространяются на расстояния до 1 000 км.

Короткие волны ведут себя иначе. Если мы настроим автомобильный радиоприёмник в городе на короткую радиоволну и начнём двигаться, то по мере удаления от города приём радиосигнала будет всё хуже, а на расстоянии примерно 250 км он прекратится совсем. Однако спустя некоторое время радиотрансляция возобновится. Почему так происходит?

Всё дело в том, что радиоволны короткого диапазона (от 10 м до 100 м, частота 30 МГц – 3 МГц) у поверхности Земли затухают очень быстро. Однако волны, уходящие под большим углом к горизонту, отражаются от верхнего слоя атмосферы – ионосферы, и возвращаются обратно, оставляя позади себя сотни километров «мертвой зоны». Далее эти волны отражаются уже от земной поверхности и снова направляются к ионосфере. Многократно отражаясь, они способны несколько раз обогнуть земной шар. Чем короче волна, тем больше угол отражения от ионосферы. Но ночью ионосфера теряет отражательную способность, поэтому в тёмное время суток связь на коротких волнах хуже.

А ультракороткие волны (метровые, дециметровые, сантиметровые с длиной волны короче 10 м), не могут отражаться от ионосферы. Распространяясь прямолинейно, они пронизывают её и уходят выше. Это их свойство используют для определения координат воздушных объектов: самолётов, стай птиц, уровня и плотности облаков и др. Но и огибать земную поверхность ультракороткие волны тоже не могут. Из-за того что они распространяются в пределах прямой видимости, их применяют для радиосвязи на расстоянии 150 – 300 км.

По своим свойствам ультракороткие волны близки к световым волнам. Но световые волны можно собрать в пучок и направить его в нужное место. Так устроены прожектор и фонарик. Точно так же поступают и с ультракороткими волнами. Их собирают специальными зеркалами-антеннами и узкий пучок посылают в нужном направлении, что особенно важно, например, в радиолокации или спутниковой связи.

Миллиметровые волны (от 1 см до 1 мм), самые короткие волны радиодиапазона, схожи с ультракороткими волнами. Они также распространяются прямолинейно. Но серьёзной помехой для них являются атмосферные осадки, туман, облака. Кроме радиоастрономии, высокоскоростной радиорелейной связи они нашли применение в СВЧ технике, используемой в медицине и в быту.

Субмиллиметровые , или децимиллиметровые, волны (от 1 мм до 0,1 мм) по международной классификации также относятся к радиоволнам. В природных условиях они почти не существуют. В энергии спектра Солнца занимают ничтожно малую долю. Поверхности Земли не достигают, так как поглощаются парами воды и молекулами кислорода, находящимися в атмосфере. Созданные искусственными источниками, применяются в космической связи, для исследования атмосфер Земли и других планет. Высокая степень безопасности этих волн для организма человека позволяет применять их в медицине для сканирования органов.

Субмиллиметровые волны называют «волнами будущего». Вполне возможно, что они дадут учёным возможность изучать строение молекул веществ совершенно новым способом, а в будущем, может быть, даже позволят управлять молекулярными процессами.

Как видим, каждый диапазон радиоволн применяется там, где особенности его распространения используются с максимальной пользой.


Уважаемый читатель!
Публикация данного документа не преследует за собой никакой коммерческой выгоды. Но такие документы способствуют профессиональному и духовному росту читателей и являются рекламой бумажных изданий таких документов. Все авторские права сохраняются за правообладателем.
За содержание статьи ответственность несут ее авторы.

Что такое радиоволны

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц ) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается по формуле: или примерно где ¦ – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок . 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны. Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации. Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth ».
Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него. Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.

Распределение спектра

Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:


Диапазон
частот

Наименование диапазона
(сокращенное наименование)

Наименование
диапазона волн

Длина волны

3–30 кГц

Очень низкие частоты (ОНЧ)

Мириаметровые

100–10 км

30–300 кГц

Низкие частоты (НЧ)

Километровые

10–1 км

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

1–0.1 км

3–30 МГц

Высокие частоты (ВЧ)

Декаметровые

100–10 м

30–300 МГц

Очень высокие частоты (ОВЧ)

Метровые

10–1 м

300–3000 МГц

Ультра высокие частоты (УВЧ)

Дециметровые

1–0.1 м

3–30 ГГц

Сверхвысокие частоты (СВЧ)

Сантиметровые

10–1 см

30–300 ГГц

Крайне высокие частоты (КВЧ)

Миллиметровые

10–1 мм

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

1–0.1 мм

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.

Пример распределения спектра между различными службами .
Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:


Термин

Диапазон
частот

Пояснения

Коротковолновый
диапазон (КВ)

2–30 МГц

Из-за особенностей распространения в
основном применяется для дальней связи.

«Си-Би »

25.6–30.1 МГц

Гражданский диапазон, в котором могут
пользоваться связью частные лица. В
разных странах на этом участке выделено от
40 до 80 фиксированных частот (каналов).

«Low Band »

33–50 МГц


Непонятно почему, но в русском языке не
нашлось термина, определяющего данный
диапазон.

УКВ

136–174 МГц

Наиболее распространенный диапазон
подвижной наземной связи.

ДЦВ

400–512 МГц

Диапазон подвижной наземной связи.
Иногда не выделяют этот участок в
отдельный диапазон, а говорят УКВ,
подразумевая полосу частот от 136 до
512 МГц.

«800 МГц»

806–825 и
851–870 МГц

Традиционный «американский» диапазон;
широко используется подвижной связью в
США. У нас не получил особого
распространения.

Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.
В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

Как распространяются радиоволны

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside ) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly ) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

Распространение длинных и коротких волн .

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.

Отражательные слои ио носферы и распространение коротких волн
в зависимости от частоты и времени суток .

Распространение коротких и ультракоротких волн .

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ
волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно
послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше , чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных
направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.

Параболические направленные антенны .

Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.

Радиочастотный диапазон и его использование для радиосвязи

2.1 Основы распространения радиоволн

Радиосвязь обеспечивает передачу информации на расстояние с помощью электромагнитных волн (радиоволн).

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т. п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Рис. 2.1 Структура электромагнитной волны.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей.

Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1Гц – это одно колебание в секунду, 1 МегаГерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны.

Длина волны (в метрах) рассчитывается по формуле:

, или примерно

где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны около 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – увеличивается.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните «Stealth».

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него, т.е. поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.

2.2 Распределение спектра радиочастот

Радиоволны (радиочастоты), используемые в радиотехнике, занимают спектр от 10 000 м (30 кГц) до 0,1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты. Реально для целей радиосвязи используются колебания в частотном диапазон от 10 кГц до 100 ГГц. Использование для связи того или иного интервала частот зависит от многих факторов, в частности от условий распространения радиоволн разных диапазонов, требуемой дальности связи, реализуемости величин мощностей передатчиков в выбранном интервале частот и др.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны (табл. 1):

Таблица 1

№п.п. Наименование диапазона Границы диапазона
Волн Устарев-шие термины Частот Радиоволн Частот
1 ДКМГМВДекаМега Метровые Крайне низкие частоты (КНЧ) 100.000-10.000км 3-30 Гц
2 МГМВМегаметровые Сверхнизкие частоты (СНЧ) 10.000-1.000 км 30-3.000Гц
3 ГКММВГектакилометровые Инфранизкие частоты (ИНЧ) 1.000-100 км 0.3-3 кГц
4 МРМВМириаметровые СДВ Очень низкие частоты (ОНЧ) VLF 100-10 км 3-30кГц
5 КМВКилометровые ДВ Низкие частоты (НЧ) LF 10-1 км 30-300кГц
6 ГКМВГектаметровые СВ Средние частоты (СЧ) VF 1000-100м 0,3-3 МГц
7 ДКМВДекаметровые КВ Высокие частоты (ВЧ) HF 100-10м 3-30 МГц
8 МВМетровые УКВ Очень высокие частоты (ОВЧ) VHF 10-1м 30-300 МГц
9 ДЦМВДециметровые УКВ Ультравысокие частоты (УВЧ) UHF 10-1 дм 0.3-3 ГГц
10 СМВСантиметровые УКВ Сверхвысокие частоты (СВЧ) SHF 10-1 см 3-30 ГГц
11 ММВМиллиметровые УКВ Крайне высокие частоты (КВЧ) EHF 10-1 мм 30-300 ГГц
12 ДЦММВДецимилли-

метровые

Субмилли-

метровые

СУММВ Гипервысокие частоты (ГВЧ) 1-0,1 мм 0,3-3 ТГц
13 Световые < 0,1 мм > 3 ТГц

Рис. 2.2 Пример распределения спектра между различными службами.

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902году английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923 году. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

2.3 Влияние атмосферы на распространение радиоволн

Характер распространения радиоволн зависит от длины волны, кривизны Земли, почвы, состава атмосферы, времени суток и года, состояния ионосферы, магнитного поля Земли, метеорологических условий.

Рассмотрим строение атмосферы, оказывающей существенное влияние на распространение радиоволн. В зависимости от времени суток и года изменяются содержание влаги и плотность воздуха.

Воздух, окружающий земную поверхность, образует атмосферу, высота которой составляет приблизительно 1000-2000 км. Состав земной атмосферы неоднороден.

Рис. 2.3 Строение атмосферы.

Слои атмосферы высотой примерно до 100-130 км по своему составу однородны. В этих слоях имеется воздух, содержащий (по объему) 78% азота и 21% кислорода. Нижний слой атмосферы толщиной 10-15 км (рис. 2.3) называется тропосферой . В этом слое имеются водяные пары, содержание которых резко колеблется с изменением метеорологических условий.

Тропосфера постепенно переходит в стратосферу . Границей считается высота, на которой прекращается падение температуры.

На высотах примерно от 60 км и выше над Землей под влиянием солнечных и космических лучей в атмосфере происходит ионизация воздуха: часть атомов распадается на свободные электроны и ионы . В верхних слоях атмосферы ионизация незначительна, так как газ очень разрежен (имеется небольшое число молекул в единице объема). По мере того как солнечные лучи проникают в более плотные слои атмосферы, степень ионизации увеличивается. С приближением к Земле энергия солнечных лучей падает, и степень ионизации опять уменьшается. Кроме того, в нижних слоях атмосферы вследствие большой плотности отрицательные заряды долго существовать не могут; происходит процесс восстановления нейтральных молекул.

Ионизация в разреженной атмосфере на высотах 60-80 км от Земли и выше сохраняется в течение длительного времени. На этих высотах атмосфера очень разрежена, плотность свободных электронов и ионов настолько низкая, что столкновение, а отсюда и восстановление нейтральных атомов происходит относительно редко.

Верхний слой атмосферы называется ионосферой. Ионизированный воздух оказывает существенное влияние на распространение радиоволн.

Днем образуется четыре регулярных слоя или максимума ионизации ‒ слои D , Е , F 1 и F 2 . Наибольшую ионизацию (наибольшее число свободных электронов в единице объема) имеет слой F 2 .

После захода Солнца ионизирующее излучение резко падает. Происходит восстановление нейтральных молекул и атомов, что приводит к уменьшению степени ионизации. Ночью полностью исчезают слои D и F 2 , ионизация слоя Е значительно уменьшается, а слой F 2 сохраняет ионизацию с некоторым ослаблением.

Рис. 2.4 Зависимость распространения радиоволн от частоты и времени суток.

Высота слоев ионосферы все время меняется в зависимости от интенсивности солнечных лучей. Днем высота ионизированных слоев меньше, ночью больше. Летом в наших широтах электронная концентрация ионизированных слоев больше, чем зимой (за исключением слоя F 2). Степень ионизации зависит также и от уровня солнечной активности, определяемой количеством пятен на Солнце. Период солнечной активности равен примерно 11 годам.

В полярных широтах наблюдаются нерегулярные процессы ионизации, связанные с так называемыми ионосферными возмущениями.

Имеется несколько путей, по которым радиоволна приходит к приемной антенне. Как уже отмечалось, радиоволны, распространяющиеся над поверхностью земли и огибающие ее вследствие явления дифракции, называются поверхностными или земными волнами (направление 1, рис. 2.5). Волны, распространяющиеся по направлениям 2 и 3, называются пространственными . Они делятся на ионосферные и тропосферные. Последние наблюдаются только в диапазоне УКВ. Ионосферными называются волны, отраженные или рассеянные ионосферой, тропосферными ‒ волны, отраженные или рассеянные неоднородными слоями или «зернами» тропосферы.

Рис. 2.5 Пути распространения радиоволн.

Поверхностная волна основанием своего фронта касается Земли, как показано на рис. 2.6. Эта волна при точечном источнике всегда имеет вертикальную поляризацию, так как горизонтальная составляющая волны поглощается Землей. При достаточном удалении от источника, выраженном в длинах волн, любой отрезок фронта волны является плоской волной.

Поверхность Земли поглощает часть энергии распространяющихся вдоль нее поверхностных волн, поскольку Земля имеет активное сопротивление.

Рис. 2.6 Распространение поверхностных волн.

Чем короче волна, т.е. чем больше частота, тем больший ток индуцируется в Земле и тем больше потери. Потери в Земле уменьшаются с увеличением проводимости почвы, так как волны проникают в Землю тем меньше, чем выше проводимость почвы. В Земле происходят и диэлектрические потери, которые также увеличиваются с укорочением волны.

Для частот выше 1 МГц поверхностная волна фактически сильно затухает из-за поглощения Землей и поэтому не используется, за исключением местной зоны действия. У телевизионных частот затухание настолько большое, что поверхностная волна может использоваться на расстояниях не больше 1-2 км от передатчика.

Связь на большие расстояния осуществляется главным образом пространственными волнами.

Чтобы получить преломление, т. е. возвращение волны на Землю, волна должна излучаться под определенным углом по отношению к земной поверхности. Наибольший угол излучения, при котором радиоволна данной частоты возвращается на землю, называется критическим углом для данного ионизированного слоя (рис. 2.7).

Рис. 2.7 Влияние угла излучения на прохождение пространственной волны.

Каждый ионизированный слой имеет свою критическую частоту и критический угол .

На рис. 2.7 показан луч, который легко преломляется слоем Е , так как луч входит под углом ниже критического угла этого слоя. Луч 3 проходит область Е , но возвращается на Землю слоем F 2 , потому что он входит под углом ниже критического угла слоя F 2 . Луч 4 также проходит слой Е . Он входит в слой F 2 при его критическом угле и возвращается на Землю. Луч 5 проходит обе области и теряется в пространстве.

Все лучи, изображенные на рис. 2.7, относятся к одной частоте. Если используется более низкая частота, требуются большие критические углы для обеих областей; наоборот, если частота увеличивается, обе области имеют меньшие критические углы. Если продолжать увеличивать частоту, то наступит момент, когда волна, распространяющаяся от передатчика параллельно Земле, будет превышать критический угол для любой области. Такое состояние получается на частоте около 30 МГц. Выше этой частоты связь пространственной волной становится ненадежной.

Итак, каждой критической частоте, соответствует свой критический угол, и, наоборот, каждому критическому углу соответствует своя критическая частота. Следовательно, любая пространственная волна, частота которой равна или ниже критической, будет на определенном удалении от передатчика возвращаться на Землю.

На рис. 2.7 луч 2 падает на слой Е при критическом угле. Обратите внимание, где отраженная волна падает на Землю (при превышении критического угла сигнал теряется); пространственная волна, дойдя до ионизированного слоя, отражается от него и возвращается на Землю на большом расстоянии от передатчика. На некотором расстоянии от передатчика, зависящем от мощности передатчика и длины волны, возможен прием поверхностной волны. От того места, где кончается прием поверхностной волны, начинается зона молчания и кончается она там, где появляется отраженная пространственная волна. Резкой границы зоны молчания не имеют.

Рис. 2.8 Зоны приема поверхностных и пространственных волн.

По мере возрастания частоты величина мертвой зоны увеличивается вследствие уменьшения критического угла. Для связи с корреспондентом на определенном расстоянии от передатчика в определенные время суток и времена года существует максимальная допустимая частота , которая может быть использована для связи пространственной волной. Каждая ионосферная область имеет свою максимальную допустимую частоту для связи.

Короткие и, тем более, ультракороткие волны в ионосфере теряют незначительную часть своей энергии. Чем выше частота, тем меньший путь проходят электроны при своих колебаниях, вследствие чего уменьшается число их столкновений с молекулами, т. е. уменьшаются потери энергии волны.

В более низких ионизированных слоях потери больше, так как повышенное давление свидетельствует о большей плотности газа, а при большей плотности газа вероятность столкновения частиц возрастает.

Длинные волны отражаются от нижних слоев ионосферы, имеющих наименьшую концентрацию электронов, при любых углах возвышения, в том числе и близких к 90°. Почва средней влажности является почти проводником для длинных волн, поэтому они хорошо отражаются от Земли. Многократным отражением от ионосферы и Земли объясняется дальнее распространение длинных волн.

Распространение длинных волн не зависит от времени года и метеорологических условий, от периода солнечной активности и от ионосферных возмущений. При отражении от ионосферы длинные волны претерпевают большое поглощение. Вот почему для связи на большие расстояния необходимо иметь передатчики большой мощности.

Средние волны заметно поглощаются в ионосфере и почве плохой и средней проводимости. Днем наблюдается только поверхностная волна, так как пространственная волна (длиннее 300 м) практически полностью поглощается в ионосфере. Для полного внутреннего отражения средние волны должны пройти некоторый путь в нижних слоях ионосферы, имеющих хотя и невысокую концентрацию электронов, но зато значительную плотность воздуха.

Ночью с исчезновением слоя D поглощение в ионосфере уменьшается, вследствие чего на пространственных волнах можно поддерживать связь на расстояниях 1500-2000 км при мощности передатчика около 1 кВт. Условия связи зимой несколько лучше, чем летом.

Достоинством средних волн является то, что они не подвержены влиянию ионосферных возмущений.

Согласно международному соглашению на волнах длиной около 600 м передаются сигналы бедствия (сигналы SOS).

Положительной стороной связи пространственной волной на коротких и средних волнах является возможность осуществления дальней связи при небольшой мощности передатчика. Но связь пространственными волнами имеет и существенные недостатки.

Во-первых , неустойчивость связи вследствие изменения высоты ионизированных слоев атмосферы в течение суток и года. Для поддержания связи с одним и тем же пунктом за сутки приходится 2-3 раза менять длину волны. Часто вследствие изменения состояния атмосферы связь на некоторое время нарушается совсем.

Во-вторых , наличие зоны молчания.

Волны короче 25 м относятся к «дневным волнам», так как они хорошо распространяются днем. К «ночным волнам» относятся волны длиннее 40 м. Эти волны хорошо распространяются ночью.

Условия распространения коротких радиоволн определяются состоянием ионизированного слоя Fг. Электронная концентрация этого слоя часто нарушается вследствие неравномерности солнечного излучения, вызывающей ионосферные возмущения и магнитные бури. В результате энергия коротких радиоволн значительно поглощается, что ухудшает радиосвязь, даже иногда делает ее совсем невозможной. Особенно часто ионосферные возмущения наблюдаются на широтах, близких к полюсам. Поэтому там коротковолновая связь ненадежна.

Наиболее заметные ионосферные возмущения имеют свою периодичность: они повторяются через 27 суток (время обращения Солнца вокруг своей оси).

В диапазоне коротких волн сильно сказывается влияние промышленных, атмосферных и взаимных помех.

Оптимальные частоты связи на коротких волнах выбираются на основе радиопрогнозов, которые делятся на долгосрочные и краткосрочные . В долгосрочных прогнозах указывается ожидаемое среднее состояние ионосферы в течение определенного отрезка времени (месяца, сезона, года и более), тогда как краткосрочные прогнозы составляются на сутки, пятидневку и характеризуют возможные отклонения ионосферы от ее среднего состояния. Прогнозы составляются в виде графиков в результате обработки систематических наблюдений за ионосферой, солнечной активностью и состоянием земного магнетизма.

Ультракороткие волны (УКВ) от ионосферы не отражаются, они свободно проходят ее, т. е. эти волны не имеют пространственной ионосферной волны. Поверхностная же ультракороткая волна, на которой возможна радиосвязь, имеет два существенных недостатка: во-первых, поверхностная волна не огибает земную поверхность и большие препятствия и, во-вторых, она сильно поглощается в почве.

Ультракороткие волны широко применяются там, где требуется небольшой радиус действия радиостанции (связь ограничивается обычно пределами прямой видимости). В этом случае связь ведется пространственной тропосферной волной. Она обычно состоит из двух составляющих: прямого луча и луча, отраженного от Земли (рис. 2.9).

Рис. 2.9 Прямой и отраженный лучи пространственной волны.

Если антенны расположены достаточно близко, оба луча обычно достигают приемной антенны, но интенсивность их различная. Луч, отраженный от Земли, слабее из-за потерь, происходящих во время отражения от Земли. Прямой луч имеет почти то же самое затухание, что и волна в свободном пространстве. В приемной антенне общий сигнал равен векторной сумме этих двух составляющих.

Приемная и передающая антенны имеют обычно одну и ту же высоту, так что длина пути отраженного луча немного отличается от прямого луча. Отраженная волна имеет сдвиг по фазе на 180°. Таким образом, пренебрегая потерями в Земле во время отражения, если два луча прошли одно и то же расстояние, векторная сумма их равна нулю, в результате в приемной антенне сигнала не будет.

В действительности отраженный луч проходит несколько большее расстояние, следовательно, разность фаз в приемной антенне будет около 180°. Разность фаз определяется разностью пути в отношениях длины волны, а не в линейных единицах. Другими словами, общий сигнал, принимаемый при этих условиях, зависит главным образом от используемой частоты. Например, если длина рабочей волны 360 м, а разность пути 2 м, сдвиг фазы будет отличаться от 180° только на 2°. В результате наблюдается почти полное отсутствие сигнала в приемной антенне. Если длина волны 4 м, та же самая разность пути 2 м будет вызывать разность фазы 180°, полностью компенсируя сдвиг фазы 180° при отражении. В этом случае сигнал удваивается по напряжению.

Из этого вытекает, что при низких частотах использование пространственных волн не представляет интереса для связи. Только на высоких частотах, где разность пути является соизмеримой с используемой длиной волны, пространственная волна широко используется.

Радиус действия передатчиков УКВ значительно увеличивается при связи самолетов в воздухе и с Землей.

К преимуществам УКВ следует отнести возможность применения небольших антенн. Кроме того, в диапазоне УКВ может одновременно работать большое число радиостанций без взаимных помех. На участке диапазона волн от 10 до 1 м можно разместить одновременно работающих станций больше, чем в диапазоне коротких, средних и длинных волн вместе взятых.

Широкое распространение получили ретрансляционные линии, работающие на УКВ. Между двумя пунктами связи, находящимися на большом расстоянии, устанавливается несколько УКВ приемопередатчиков, расположенных в пределах прямой видимости один от другого. Промежуточные станции работают автоматически. Организация ретрансляционных линий позволяет повысить дальность связи на УКВ и осуществить, многоканальную связь (вести одновременно несколько телефонных и телеграфных передач).

Сейчас уделяется большое внимание использованию УКВ диапазона для дальней радиосвязи.

Наибольшее применение получили линии связи, работающие в диапазоне 20-80 МГц и использующие явления ионосферного рассеяния. Считалось, что радиосвязь через ионосферу возможна лишь на частотах ниже 30 МГц (длина волны более 10 м), а так как этот диапазон полностью загружен и дальнейшее увеличение числа каналов в нем невозможно, вполне понятен интерес к рассеянному распространению радиоволн.

Это явление заключается в том, что некоторая часть энергии излучения сверхвысоких частот рассеивается имеющимися в ионосфере неоднородностями. Создаются эти неоднородности воздушными течениями слоев с различными температурой и влажностью, блуждающими заряженными частицами, продуктами ионизации хвостов метеоритов и другими еще малоизученными источниками. Поскольку тропосфера всегда неоднородна, рассеянное преломление радиоволн существует систематически.

Рассеянное распространение радиоволн подобно рассеянию света прожектора в темную ночь. Чем мощнее световой луч, тем больше он дает рассеянного света.

При изучении дальнего распространения ультракоротких волн было замечено явление резкого кратковременного повышения слышимости сигналов. Такие всплески случайного характера длятся от нескольких миллисекунд до нескольких секунд. Однако практически они наблюдаются в течение суток с перерывами, редко превышающими несколько секунд. Появление моментов повышенной слышимости объясняется главным образом отражением радиоволн от ионизированных слоев метеоритов, сгорающих на высоте около 100 км. Диаметр этих метеоритов не превышает нескольких миллиметров, а их следы тянутся на несколько километров.

От метеоритных следов хорошо отражаются радиоволны частотой 50-30 МГц (6-10 м).

Ежедневно в земную атмосферу влетает несколько миллиардов таких метеоритов, оставляя за собой ионизированные следы с высокой плотностью ионизации воздуха. Это и дает возможность получить надежную работу радиолиний большой протяженности при использовании передатчиков относительно небольшой мощности. Неотъемлемой частью станций на таких линиях является вспомогательное буквопечатающее оборудование, снабженное элементом памяти.

Поскольку каждый метеоритный след существует всего несколько секунд, передача ведется автоматически короткими сериями.

В настоящее время широко используются связь и телевизионные передачи через искусственные спутники Земли.

Таким образом, по механизму распространения радиоволн линии радиосвязи можно классифицировать на линии, использующие:

процесс распространения радиоволн вдоль земной поверхности с огибанием ее (так называемые земные или поверхностные волны);

процесс распространения радиоволн в пределах прямой видимости (прямые волны);

отражение радиоволн от ионосферы (ионосферные волны);

процесс распространения радиоволн в тропосфере (тропосферные волны);

отражение радиоволн от метеорных следов;

отражение или ретрансляцию от искусственных спутников Земли;

отражение от искусственно создаваемых образований газовой плазмы или искусственно созданных проводящих поверхностей.

2.4 Особенности распространения радиоволн различных диапазонов

На условия распространения радиоволн в пространстве между передатчиком и радиоприемником корреспондентов оказывает влияние конечная проводимость земной поверхности и свойства среды над Землей. Это влияние для различных диапазонов волн (частот) различно.

Мириаметровые и километровые волны (СДВ и ДВ ) могут распространяться и как земные, и как ионосферные. Наличие земной волны, распространяющейся на сотни и даже тысячи километров, объясняется тем, что напряженность поля этих волн убывает с расстоянием довольно медленно, так как поглощение их энергии земной или водной поверхностью невелико. Чем длиннее волна и лучше проводимость почвы, тем на большие расстояния обеспечивается радиосвязь.

В большой степени поглощают электромагнитную энергию песчаные сухие почвы и горные породы. При распространении за счет явления дифракции они огибают выпуклую земную поверхность, встречающиеся на пути препятствия: леса, горы, возвышенности и т.д. Начиная с расстояния 300-400 км от передатчика, появляется ионосферная волна, отраженная от нижней области ионосферы (от слоя D или Е). Днем из-за наличия слоя D поглощение электромагнитной энергии становится более существенным. Ночью, с исчезновением этого слоя, дальность связи увеличивается. Таким образом, прохождение длинных волн ночью, как правило, лучше, чем днем. Глобальные связи на СДВ и ДВ осуществляются волнами, распространяющимися в сферическом волноводе, образованном ионосферой и земной поверхностью.

Преимущество СДВ-, ДВ- диапазона:

радиоволны СДВ- и ДВ-диапазона обладают свойством проникать в толщу воды, а также распространяться в некоторых структурах почвы;

за счет волн, распространяющихся в сферическом волноводе Земли, обеспечивается связь на тысячи километров;

дальность связи мало зависит от ионосферных возмущений;

хорошие дифракционные свойства радиоволн этих диапазонов позволяют обеспечивать связь на сотни и даже тысячи километров земной волной;

постоянство параметров радиолинии обеспечивает стабильный уровень сигнала в точке приема.

Недостатки СДВ-,ДВ,- диапазона:

эффективное излучение волн рассматриваемых участков диапазона может достигаться лишь с помощью весьма громоздких антенных устройств, размеры которых соизмеримы с длиной волны. Строительство и восстановление антенных устройств таких размеров в ограниченное время (в военных целях) затруднительно;

поскольку размеры реально выполняемых антенн меньше длины волны, то компенсация пониженной их эффективности достигается увеличением мощности передатчиков до сотен и более кВт;

создание резонансных систем в этом диапазоне и при значительных мощностях определяет большие размеры выходных каскадов: передатчиков, сложность быстрой перестройки на другую частоту;

для электропитания радиостанций СДВ- и ДВ-диапазонов) требуются большие мощности электростанций;

существенным недостатком СДВ- и ДВ-диапазонов является их небольшая частотная емкость;

достаточно большой уровень промышленных и атмосферных помех;

зависимость уровня сигнала в точке приема от времени суток.

Область практического применения радиоволн СДВ-, ДВ -диапазона:

связь с подводными объектами;

связь по глобальным магистральным линиям и подземная связь;

радиомаяки, а также связь в дальней авиации и ВМФ.

Гектометровые волны (СВ) могут распространяться поверхностной и пространственной волнами. Причем дальность связи поверхностной волной у них меньше (не превышает 1000-1500 км), так как их энергия поглощается почвой больше, чем у длинных волн. Волны, достигающие ионосферы, интенсивно поглощаются слоем D , когда он существует, но хорошо отряжаются слоем Е.

У средних волн дальность связи очень зависит от времени суток. Днем средние волны так сильно поглощаются в нижних слоях ионосферы, что пространственная волна практически отсутствует. Ночью слой D и нижняя часть слоя Е исчезают, поэтому поглощение средних волн уменьшается; и пространственные волны начинают играть главную роль. Таким образом важной особенностью средних волн является то, что днем связь на них поддерживается поверхностной волной, а ночью ‒ как поверхностной так и пространственной волнами одновременно.

Преимущества СВ-диапазона:

в ночное время летом и в течение большей части суток зимой дальность связи, обеспечиваемая ионосферной волной, достигает тысячи километров;

средневолновые антенные устройства оказываются достаточно эффективными и имеют приемлемые габариты даже для мобильных средств радиосвязи;

частотная емкость этого диапазона больше, чем СДВ- и ДВ-диапазонов;

хорошие дифракционные свойства радиоволн этого диапазона;

мощности передатчиков меньше, чем СДВ- и ДВ-диапазонов;

малая зависимость от ионосферных возмущений и магнитных бурь.

Недостатки СВ-диапазона:

загруженность СВ-диапазона мощными радиовещательными радиостанциями создает затруднения в широком использовании;

ограниченная частотная емкость диапазона затрудняет маневр частотами;

дальность связи на СВ в дневное время летом всегда ограничена, так как она возможна лишь земной волной;

достаточно большие мощности передатчиков;

затруднительно применение высокоэффективных антенных устройств, сложность построения и восстановление в короткие сроки;

достаточно большой уровень взаимных и атмосферных помех.

Область практического применения paдиoвoлн СВ-диапазона; средневолновые радиостанции чаще всего применяются в арктических районах, как резервные в случаях потери широко используемой коротковолновой радиосвязи из-за ионосферных и магнитных возмущений, а также в дальней авиации и ВМФ.

Декаметровые волны (KB ) занимают особое положение. Они могут распространяться и как земные, и как ионосферные волны. Земные волны при относительно небольших мощностях передатчиков, свойственных мобильным радиостанциям, распространяются на расстояния, не превышающие нескольких десятков километров, так как они испытывают значительное поглощение в земле, увеличивающееся с ростом частоты.

Ионосферные волны за счет однократного или многократного отражения от ионосферы при благоприятных условиях могут распространяться на большие расстояния. Их основное свойство заключается в том, что они слабо поглощаются нижними областями ионосферы (слоями D и Е ) и хорошо отражаются ее верхними областями (главным образом слоем F 2 . находящимся на высоте 300-500 км над землей). Это дает возможность использовать относительно маломощные радиостанции для ведения прямой связи в неограниченно широком диапазоне расстояний.

Существенное снижение качества KB радиосвязи ионосферными волнами происходит из-за замирания сигналов. Природа замираний в основном сводится к интерференции нескольких приходящих к месту приема лучей, фаза которых вследствие изменения состояния ионосферы непрерывно меняется.

Причинами прихода нескольких лучей в место приема сигналов могут быть:

облучение ионосферы под углами, при которых лучи, претерпевающие

различное число отражений от ионосферы и Земли, сходятся в точке приема;

явление двойного лучепреломления под воздействием магнитного поля Земли, благодаря которому два луча (обыкновенный и необыкновенный), отражаясь от различных слоев ионосферы, достигают одной и той же точки приема;

неоднородность ионосферы, приводящая к диффузному отражению волн от различных ее областей, т.е. к отражению пучков множества элементарных лучей.

Замирания могут происходить также в силу поляризационных флуктуаций волн при отражении от ионосферы, приводящих к изменению соотношения вертикальных и горизонтальных составляющих электрического поля в месте приема. Поляризационные замирания наблюдаются гораздо реже интерференционных и составляют 10-15 % общего их числа.

Уровень сигнала в точках приема в результате замираний может изменяться в широких пределах ‒ в десятки и даже сотни раз. Промежуток времени между глубокими замираниями является случайной величиной и может меняться от десятых долей секунды до нескольких секунд, а иногда и более, причем переход от высокого к низкому уровню может проходить как плавно, так и весьма резко. Быстрые изменения уровня часто накладываются на медленные.

Условия прохождения коротких волн через ионосферу меняются от года к году, что связано с почти периодическим изменением солнечной активности, т.е. с изменением числа и площади солнечных пятен (числа Вольфа), которые являются источниками радиации, ионизирующей атмосферу. Период повторения максимальной солнечной активности составляет 11,3±4 года. В годы максимальной солнечной активности максимально применимые частоты (МПЧ) повышаются, а области рабочих диапазонов частот расширяются.

На рис. 2.10 показано типовое семейство суточных графиков МПЧ и наименьших применимых частот (НПЧ) для излучаемой мощности, равной 1 кВт.

Рис. 2.10 Ход кривых МПЧ и НПЧ.

Это семейство суточных графиков соответствует определенным географическим районам. Из него следует, что применимый диапазон частот для ведения связи на заданное расстояние может оказаться весьма небольшим. При этом необходимо учитывать, что ионосферные прогнозы могут иметь погрешность, поэтому при выборе максимальных частот связи стараются не превышать линию так называемой оптимальной рабочей частоты (ОРЧ), проходящей ниже линии МПЧ на 20-30 %. Разумеется, что рабочая ширина участка диапазона от этого дополнительно сокращается. Снижение уровня сигнала при приближении к максимально применимой частоте объясняется непостоянством параметров ионосферы.

В связи с тем, что состояние ионосферы изменяется, связь ионосферной волной требует правильного выбора частот в течение суток:

ДНЕМ используют частоты 12-30 МГц,

УТРОМ и ВЕЧЕРОМ 8-12 МГц, НОЧЬЮ 3-8 МГц.

Из графиков также видно, что с уменьшением протяженности линии радиосвязи участок применимых частот сокращается (для расстояний до 500 км в ночное время он может составлять всего лишь 1-2 МГц).

Условия радиосвязи для протяженных линий оказываются более благоприятными, чем для коротких, так как их меньше, а участок пригодных частот для них значительно шире.

Существенное влияние на состояние KB радиосвязи (особенно в полярных районах) могут иметь ионосферные и магнитные бури, т.е. возмущения ионосферы и магнитного поля Земли под воздействием потоков заряженных частиц, извергаемых Солнцем. Эти потоки часто разрушают основной отражающий ионосферный слой F2 в районе высоких геомагнитных широт. Магнитные бури могут проявляться не только в полярных областях, но и на всем земном шаре. Ионосферные возмущения обладают периодичностью и связаны со временем обращения Солнца вокруг своей оси, которое равно 27 суткам.

Для коротких волн характерно наличие зон молчания (мертвых зон). Зона молчания (рис. 2.8) возникает при радиосвязи на большие расстояния на участках, до которых поверхностная волна не доходит вследствие её затухания, а пространственная волна отражается от ионосферы на большее расстояние. Это происходит при использовании узконаправленных антенн при излучении под небольшими углами к горизонту.

Преимущества КВ-диапазона:

ионосферные волны могут распространяться на большие расстояния за счет однократного или многократного отражения от ионосферы при благоприятных условиях. Они слабо поглощаются нижними областями ионосферы (слоями D и Е) и хорошо отражаются верхними (главным образом, слоем F2);

возможность использовать относительно маломощные радиостанции для ведения прямой связи в неограниченно широком диапазоне расстояний;

частотная вместимость КВ-диапазона значительно больше, чем СДВ-, ДВ-, СВ-диапазонов, что обеспечивает возможность одновременной работы большого числа радиостанций;

антенные устройства, используемые в диапазоне декаметровых волн, имеют приемлемые (даже для установки на подвижных объектах) габариты и могут обладать явно выраженными направленными свойствами. Они имеют малое время развертывания, дешевы и легко восстанавливаются при повреждениях.

Недостатки КВ-диапазона:

радиосвязь ионосферными волнами может осуществляться, если применяемые частоты лежат ниже максимальных значений (МПЧ), определяемых для каждой протяженности линии радиосвязи степенью ионизации отражающих слоев;

связь возможна лишь в том случае, если мощности передатчиков и коэффициенты усиления применяемых антенн при имеющем место поглощении энергии в ионосфере обеспечивают необходимую напряженность электромагнитного поля в точке приема. Это условие ограничивает нижний предел применимых частот (НПЧ);

недостаточная частотная емкость для использования широкополосных режимов работы и маневра частотами;

огромное количество одновременно работающих радиостанций при большой дальности связи создает большой уровень взаимных помех;

большая дальность связи позволяет легко использовать противником преднамеренные помехи;

наличие зон молчания при обеспечении связи на большие расстояния;

существенное снижение качества KB радиосвязи ионосферными волнами из-за замирания сигналов, возникающих в силу непостоянства структуры отражающих слоев ионосферы, ее постоянного возмущения и многолучевого распространения волн.

Область практического применения радиоволн КВ-диапазона

KB радиостанции находят самое широкое практическое применение для связи удаленными абонентами.

Метровые волны (УКВ) включают в себя ряд участков частотного диапазона, обладающих огромной частотной емкостью.

Естественно, что эти участки в значительной степени отличаются один другого по свойствам распространения радиоволн. Энергия УКВ сильно поглощается Землей (в общем случае пропорционально квадрату частоты), поэтому земная волна довольно быстро затухает. Для УКВ несвойственно регулярное отражение от ионосферы, следовательно, связь рассчитывается на использование земной волны и волны, распространяющейся в свободном пространстве. Пространственные волны короче 6-7 м (43-50 МГц), как правило, проходят через ионосферу, не отражаясь от нее.

Распространение УКВ происходит прямолинейно, максимальная дальность ограничивается дальностью прямой видимости. Ее можно определить по формуле:

где Dmax – дальность прямой видимости, км;

h1 – высота передающей антенны, м;

h2 – высота приемной антенны, м.

Однако за счет рефракции (преломления) происходит искривление распространения радиоволн. В этом случае в формуле дальности более точным будет коэффициент не 3,57, а 4,1-4,5. Из этой формулы следует, что для увеличения дальности связи на УКВ необходимо выше поднимать антенны передатчика и приемника.

Увеличение мощности передатчика не ведет к пропорциональному увеличению дальности связи, поэтому в данном диапазоне находят применение маломощные радиостанции. При связи за счет тропосферного и ионосферного рассеяния требуются передатчики значительных мощностей.

На первый взгляд дальность связи земными волнами на УКВ должна быть весьма небольшой. Однако следует учитывать, что с ростом частоты повышается эффективность антенных устройств, за счет чего компенсируются энергетические потери в Земле.

Дальность связи земными волнами зависит от длины волн. Наибольшая дальность достигается на метровых волнах, особенно на волнах, примыкающих к КВ-диапазону.

Метровые волны обладают свойством дифракции , т.е. свойством огибать неровности рельефа местности. Увеличению дальности связи на метровых волнах способствует явление тропосферной рефракции , т.е. явление преломления в тропосфере, что и обеспечивает ведение связи на закрытых трассах.

В диапазоне метровых волн нередко наблюдается дальнее распространение радиоволн, что обусловлено рядом причин. Дальнее распространение может возникнуть при образовании спорадических ионизированных облаков (спорадического слоя Fs). Известно, что этот слой может появиться в любое время года и суток, однако для нашего полушария – преимущественно в конце весны и начале лета в дневное время. Особенностью этих облаков является весьма высокая ионная концентрация, достаточная иногда для отражения волн всего УКВ-диапазона. При этом зона расположения источников излучения относительно точек приема находится чаще всего на удалении 2000-2500 км, а иногда и ближе. Интенсивность сигналов, отраженных от слоя Fs, может быть очень большой даже при весьма небольших мощностях источников.

Другой причиной дальнего распространения метровых волн в годы максимума солнечной активности может быть регулярный слой F2. Это распространение проявляется в зимние месяцы в освещенное время точек отражения, т.е. тогда, когда поглощение энергии волн в нижних областях ионосферы минимально. Дальность связи при этом может достигать глобальных масштабов.

Дальнее распространение метровых волн может быть также при осуществлении высотных ядерных взрывов. В этом случае, кроме нижней области повышенной ионизации возникает верхняя (на уровне слоя Fs). Метровые волны проникают через нижнюю область, испытывая некоторое поглощение, отражаются от верхней и возвращаются на Землю. Расстояния, перекрываемые при этом, лежат в пределах от 100 до 2500 км. Напряженность поля отраженных волн зависит от частоты: наиболее низкие частоты претерпевают наибольшее поглощение в нижней области ионизации, а наиболее высокие испытывают неполное отражение от верхней области.

Граница раздела между KB и метровыми волнами проходит на длине волны 10 м (30 МГц). Свойства распространения радиоволн не могут изменяться скачком, т.е. должна существовать область или участок частот, который является переходным . Таким участком частотного диапазона является участок 20-30 МГц. В годы минимума солнечной активности (а также в ночное время независимо от фазы активности) эти частоты практически непригодны для дальней связи ионосферными волнами и их использование оказывается чрезвычайно ограниченным. В то же время при указанных условиях свойства распространения волн этого участка становятся весьма близкими к свойствам метровых волн. Не случайно этот участок частот применяется в интересах радиосвязи, ориентирующейся на метровые волны.

Преимущества УКВ-диапазона:

малые габариты антенн позволяют реализовать ярко выраженное направленное излучение, компенсирующее быстрое затухание энергии радиоволн;

условия распространения в основном не зависят от времени суток и годa, а также солнечной активности;

ограниченная дальность связи позволяет многократно использовать одни и те же частоты на участках поверхности, расстояние между границами которых не меньше суммы дальности действия радиостанций с одинаковыми частотами;

меньший уровень непреднамеренных (естественного и искусственного происхождения) и преднамеренных помех за счет узконаправленных антенн и ог раниченной дальности связи;

огромная частотная ёмкость, позволяющая использовать помехоустойчивые широкополосные сигналы для большого числа одновременно работающих станций;

при использовании для радиосвязи широкополосных сигналов достаточно частотной нестабильности радиолинии δf=10 -4 ;

способность УКВ проникать через ионосферу без существенных энергетических потерь сделала возможным осуществление космической радиосвязи на расстояния, измеряемые миллионами километров;

высокое качество радиоканала;

из-за весьма низких энергетических потерь в свободном пространстве дальность связи между летательными аппаратами, оборудованными относительно маломощными радиостанциями, может достигать нескольких сот километров;

свойство дальнего распространения метровых волн;

малая мощность передатчиков и небольшая зависимость дальности связи от мощности.

Недостатки УКВ-диапазона:

малая дальность радиосвязи земной волной, практически ограниченная прямой видимостью;

при использовании узконаправленных антенн затруднена работа с несколькими корреспондентами;

при использовании антенн с круговой направленностью уменьшается дальность связи, разведзащищенность, помехозащищенность.

Область практического применения радиоволн УКВ-дианазона Диапазон используется одновременно большим числом радиостанций, тем более что дальность взаимного мешания между ними, как правило, невелика. Свойства распространения земных волн обеспечивают широкое применение ультракоротких волн для связи в тактическом звене управления, в том числе между различного рода подвижными объектами. Связь на межпланетные расстояния.

Учитывая преимущества и недостатки каждого диапазона, можно сделать вывод, что наиболее приемлемыми диапазонами для работы радиостанциями малой мощности являются диапазоны декаметровых (KB) и метровых (УКВ) волн.

2.5 Влияние ядерных взрывов на состояние радиосвязи

При ядерных взрывах мгновенное гамма-излучение, взаимодействуя с атомами окружающей среды, создает поток быстрых электронов, летящих с большой скоростью преимущественно в радиальном направлении от центра взрыва, и положительных ионов, остающихся практически на месте. Таким образом, в пространстве на некоторое время происходит разделение положительных и отрицательных зарядов, что приводит к возникновению электрических и магнитных полей. Эти поля ввиду их кратковременности принято называть электромагнитным импульсом (ЭМИ ) ядерного взрыва. Продолжительность его существования примерно 150-200 миллисекунд.

Электромагнитный импульс (пятый поражающий фактор ядерного взрыва ) при отсутствии специальных мер защиты может повреждать аппаратуру управления и связи, нарушать работу электрических устройств, подключенных к протяженным наружным линиям.

Наиболее подвержены воздействию электромагнитного импульса ядерного взрыва системы связи, сигнализации и управления. В результате воздействия ЭМИ наземного или воздушного ядерного взрыва на антенны радиостанций в них наводится электрическое напряжение, под действием которого может происходить пробой изоляции, трансформаторов, плавление проводов, выход из строя разрядников, порча электронных ламп, полупроводниковых приборов, конденсаторов, сопротивлений и т. п.

Установлено, что при воздействии ЭМИ на аппаратуру наибольшее напряжение наводится на входных цепях, В отношении транзисторов наблюдается такая зависимость: чем выше коэффициент усиления транзистора, тем меньше его электрическая прочность.

Радиоаппаратура имеет электрическую прочность по постоянному напряжению не более 2-4 кВ. Учитывая, что электромагнитный импульс ядерного взрыва является кратковременным, предельную электрическую прочность аппаратуры без средств защиты можно считать более высокой ‒ примерно 8-10 кВ.

В табл. 1 приведены ориентировочные расстояния (в км), на которых в антеннах радиостанций в момент ядерного взрыва наводятся опасные для аппаратуры напряжения, превышающие 10 и 50 кВ.

Таблица 1

Hа бȍльших расстояниях воздействие ЭМИ оказывается аналогичным воздействию не очень далекого разряда молнии и не вызывает повреждения аппаратуры.

Воздействие электромагнитного импульса на радиоаппаратуру резко снижается в случае применения специальных мер защиты.

Наиболее аффективным способом зашиты радиоэлектронной аппаратуры, расположенной в сооружениях, является использование электропроводящих (металлических) экранов, которые в значительной мере снижают величины напряжений, наводимых на внутренних проводах и кабелях. Применяются средства защиты, аналогичные грозозащитным средствам: разрядники с дренажными и запирающими катушками, плавкие вставки, развязывающие устройства, схемы автоматического отключения аппаратуры от линии.

Хорошей защитной мерой является также надежное заземление аппаратуры в одной точке. Эффективно и выполнение радиотехнических устройств поблочно, с зашитой каждого блока и всего устройства в целом. Это дает возможность быстро сменить вышедший из строя блок резервным (в наиболее ответственной аппаратура проводится дублирование блоков с автоматическим переключением их при повреждении основных). В некоторых случаях дли защиты от ЭМИ можно использовать селеновые элементы и стабилизаторы.

Кроме того, могут быть применены защитные входные приспособления , которые представляют собой различные релейные или электронные устройства, реагирующие на превышение напряжения в цепи. При приходе импульса напряжения, наведенного в линии электромагнитным импульсом, они отключают питание от аппарата или просто разрывают рабочие цепи.

При выборе защитных устройств, следует учитывать, что воздействие ЭМИ характеризуется массовостью, то есть одновременным срабатыванием защитных средств во всех цепях, оказавшихся в районе взрыва. Поэтому применяемые схемы защиты должны автоматически восстанавливать работоспособность цепей немедленно после прекращения действия электромагнитного импульса.

Устойчивость аппаратуры к воздействию напряжения, возникающих в линиях при ядерном взрыве, в большой степени зависит от правильной эксплуатации линии и тщательного контроля исправности средств защиты.

К важным требованиям эксплуатации относится периодическая и своевременная проверка электрической прочности изоляции линии и входных цепей аппаратуры, своевременное выявление и устранение возникших заземлений проводов, контроль за исправностью разрядников, плавких вставок и т. п.

Высотный ядерный взрыв сопровождается образованием областей повышенной ионизации. При взрывах на высотах примерно до 20 км ионизированная область ограничивается сначала размерами светящейся области, а затем облаком взрыва. На высотах 20-60 км размеры ионизированной области несколько больше размеров облака взрыва, особенно у верхней границы этого диапазона высот.

При ядерных взрывах на больших высотах в атмосфере возникают две области повышенной ионизации.

Первая область образуется в районе взрыва за счет ионизированного вещества боеприпаса и ионизации воздуха ударной волной. Размеры этой области в горизонтальном направлении достигают десятков и сотен метров.

Вторая область повышенной ионизации возникает ниже центра взрыва в слоях атмосферы на высотах 60-90 км в результате поглощения воздухом проникающих излучений. Расстояния, на которых проникающие излучения производят ионизацию, в горизонтальном направлении составляют сотни и даже тысячи километров.

Области повышенной ионизации, возникающие при высотном ядерном взрыве, поглощают радиоволны и изменяют направление их распространения, что приводит к существенному нарушению работы радиосредств. При этом возникают перебои в радиосвязи, а в некоторых случаях она нарушается полностью.

Характер поражающего действия электромагнитного импульса высотных ядерных взрывов в основном аналогичен характеру поражающего действия ЭМИ наземных и воздушных взрывов.

Меры защиты от поражающего действия электромагнитного импульса высотных взрывов такие же, как и от ЭМИ наземных и воздушных взрывов.

2.5.1 Защита от ионизирующих и электромагнитных излучений

высотных ядерных взрывов (ВЯВ)

Помехи РС могут возникать вследствие взрывов ядерных боеприпасов, сопровождающихся излучением мощных электромагнитных импульсов малой длительности (10-8 сек) и изменением электрических свойств атмосферы.

ЭМИ (радиовспышка) возникает:

во-первых , в результате асимметричного расширения облака электрических разрядов, образующихся под воздействием ионизирующих излучений взрывов;

во-вторых , за счет быстрого расширения хорошо проводящего газа (плазмы), образующегося из продуктов взрыва.

После взрыва в космосе создается огненный шар, который представляет собой сильно ионизированную сферу. Эта сфера быстро расширяется (со скоростью порядка 100-120 км/ч) над земной поверхностью, преобразуясь в сферу ложной конфигурации, толщина сферы достигает 16-20 км. Концентрация электронов в сфере может доходить до 105-106 электр./см3, т. е. в 100-1000 раз превышать нормальную концентрацию электронов в ионосферном слое D .

Высотные ядерные взрывы (ВЯВ) на высотах больше 30 км существенным образом влияют на больших пространствах в течение продолжительного времени на электрические характеристики атмосферы, и, следовательно, оказывают сильное влияние на распространение радиоволн.

Кроме того, возникающий при ВЯВ мощный электромагнитный импульс индуцирует в проводных линиях связи большие напряжения (до 10 000-50 000 В) и токи до нескольких тысяч ампер.

Мощность ЭМИ настолько велика, что его энергии достаточно для проникновения в толщу земли до 30 м и наведения ЭДС в радиусе до 50-200 км от эпицентра взрыва.

Однако основное воздействие ВЯВ состоит в том, что выделившееся про взрыве огромное количество энергии, а также интенсивные потоки нейтронов, рентгеновских, ультрафиолетовых и гамма – лучей приводят к образованию в атмосфере сильно ионизированных областей и повышению плотности электронов в ионосфере, что в свою очередь, ведет к поглощению радиоволн и нарушению устойчивости функционирования системы управления.

2.5.2 Характерные признаки ВЯВ

ВЯВ в данном районе или вблизи него сопровождается мгновенным прекращением приема дальних станций в КВ диапазоне волн.

В момент прекращения связи в телефонах наблюдается короткий щелчок, а затем прослушиваются только собственные шумы приемника и слабые трески типа громовых разрядов.

Через несколько минут после прекращения связи на КВ резко возрастают помех от дальних станций в метровом диапазоне волн на УКВ.

Уменьшается дальность действия РЛС и точность измерения координат.

В основе защиты электронных средств лежит правильное использование частотного диапазона и всех факторов, которые возникают в результате применения ВЯВ

2.5.3 Основные определения:

отраженная радиоволна (отраженная волна ) – радиоволна, распространяющаяся после отражения от поверхности раздела двух сред или от неоднородностей среды;

прямая радиоволна (прямая волна ) – радиоволна, распространяющаяся непосредственно от источников к месту приема;

земная радиоволна (земная волна ) – радиоволна, распространяющаяся вблизи земной поверхности и включающая прямую волну, волну, отраженную от земли, и поверхностную волну;

ионосферная радиоволна (ионосферная волна ) – радиоволна, распространяющаяся в результате отражения от ионосферы или рассеяния на ней;

поглощение радиоволн (поглощение ) – уменьшение энергии радиоволны вследствие частичного перехода ее в тепловую энергию в результате взаимодействия со средой;

многолучевое распространение радиоволн (многолучевое распространение ) – распространение радиоволн от передающей к приемной антенне по нескольким траекториям;

действующая высота отражения слоя (действующая высота ) – гипотетическая высота отражения радиоволны от ионизированного слоя, зависящая от распределения электронной концентрации по высоте и длине радиоволны, определяемая через время между передачей и приемом отраженной ионосферной волны при вертикальном зондировании в предположении, что скорость распространения радиоволны на всем пути равна скорости света в вакууме;

ионосферный скачок (скачок ) – траектория распространения радиоволны одной точки на поверхности Земли к другой, прохождение по которой сопровождается одним отражением от ионосферы;

максимальная применимая частота (МПЧ ) – наивысшая частота радиоизлучения, на которой существует ионосферное распространение радиоволн между заданными пунктами в заданное время в определенных условиях, это частота, которая еще отражается от ионосферы;

оптимальная рабочая частота (ОРЧ ) – частота радиоизлучения ниже ПЧ, на которой может осуществляться устойчивая радиосвязь в определенных геофизических условиях. Как правило, ОРЧ ниже МПЧ на 15%;

вертикальное ионосферное зондирование (вертикальное зондирование ) – ионосферное зондирование при помощи радиосигналов, излучаемых вертикально вверх относительно поверхности Земли при условии, что точки излучения и приема совмещены;

ионосферное возмущение – нарушение в распределении ионизации в слоях атмосферы, которое превосходит обычно изменения средних характеристик ионизации для данных географических условий;

ионосферная буря – продолжительное ионосферное возмущение большой интенсивности.

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия высокочастотного генератора распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

1. Что такое радиоволны? 3

1.1. Радиоволны 3

1.2. Распространение радиоволн 4

1.3. Как распространяются радиоволны 6

2. Диапазон 10

2.1. Динамический диапазон 12

2.2. Распределение спектра 12

3. Источники 15

3.1.Радиоизлучение Солнца 15

3.2.Галактические радиоисточники 15

3.3.Отождествление источников 16

3.4.Фоновое излучение 17

3.5.Радиоизлучение планет 17

3.6.Излучение водорода 17

4. Открытие и применение

Библиография

1.Что такое радиоволны

1.1.Радиоолны

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается по формуле: или примерно где ¦ – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны. Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации. Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth».
Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него. Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.

1.2.Распространение радиоволн

Самый простой случай - это распространение радио волны в свободном пространстве. Уже на небольшом расстоянии от радиопередатчика его можно считать точкой. А если так, то фронт радиоволны можно считать сферическим. Если мы проведем мысленно несколько сфер, окружающих радиопередатчик, то ясно, что при отсутствии поглощения энергия, проходящая через сферы, будет оставаться неизменной. Ну, а поверхность сферы пропорциональна квадрату радиуса. Значит, интенсивность волны, т. е. энергия, приходящаяся на единицу площади в единицу времени, будет падать по мере удаления от источника обратно пропорционально квадрату расстояния.

Конечно, это важное правило применимо в том случае, если не приняты специальные меры для того, чтобы создать узконаправленный поток радиоволн.

Существуют различные технические приемы для создания направленных радиолучей. Один из способов решения этой задачи состоит в использовании правильной решетки антенн. Антенны должны быть расположены так, чтобы посылаемые ими волны отправлялись в нужном направлении “горб к горбу”. Для этой же цели используются зеркала разной формы.

Радиоволны, путешествующие в космосе, будут отклоняться от прямолинейного направления - отражаться, рассеиваться, преломляться - в том случае, если на их пути встретятся препятствия, соизмеримые с длиной волны и даже несколько меньшие.

Наибольший интерес представляет для нас поведение волн, идущих вблизи с земной поверхности. В каждом отдельном случаи картина может быть весьма своеобразной, в зависимости от того, какова длина волны.

Кардинальную роль играют электрические свойства земли и атмосферы. Если поверхность способна проводить ток, то она “не отпускает” от себя радиоволны. Электрические силовые линии электромагнитного поля подходит к металлу (шире - к любому проводнику) под прямым углом.

Теперь представьте себе, что радиопередача происходит вблизи морской поверхности. Морская вода содержит растворенные соли, т. е. является электролитом. Морская вода - превосходный проводник тока. Поэтому она “держит” радиоволну, заставляет ее двигаться вдоль поверхности моря.

Но и равнинная, а так же лесистая местности являются хорошими проводниками для токов не слишком высокой частоты. Иными словами, для длинных волн лес равнина ведут себя как металл.

Поэтому длинные волны удерживаются всей земной поверхностью и способна обогнуть земной шар. Кстати говоря, этим способом можно определить скорость радиоволн. Радиотехникам известно, что на то, чтобы обогнуть земной шар, радиоволна затрачивает 0.13 с. А как же горы? Ну что же, для длинных волн они не столь уж высоки, и радиоволна длиной в километр более или менее способна обогнуть гору.

Что же касается коротких волн, то возможность дальнего радиоприема на этих волнах обязана наличию над Землей ионосферы. Солнечные лучи обладают способностью разрушать молекулы воздуха в верхних областях атмосферы. Молекулы превращаются в ионы и на расстояниях 100- 300 км от земли образуют несколько заряженных слоев. Так что для коротких волн пространство, в котором движется волна, - это слой диэлектрика, зажатого между двумя проводящими поверхностями.

Поскольку равнинная и лесистая поверхности не являются хорошими проводниками для коротких волн то они не способны их удержать. Короткие волны отправляются в свободное путешествие, но натыкаются на ионосферу, отражающую их, как поверхность металла.

Ионизация ионосферы не однородна и, конечно, различна днем и ночью. По этому пути коротких радиоволн могут быть самыми различными. Они могут добраться до вашего радиоприемника и после многократных отражений с Землей и ионосферой. Судьба короткой волны зависит от того, под каким углом попадает она на ионосферный слой. Если этот угол близок к прямому, то отражение не произойдет и волна уйдет в мировое пространство. Но чаще имеет место полное отражение и волна возвращается на Землю.

Для ультракоротких волн ионосфера прозрачна. Поэтому на этих длинах волн возможен радиоприем в пределах прямой видимости или с помощью спутников. Направляя волну на спутник, мы можем ловить отраженные от него сигналы на огромных расстояниях.

Спутники открыли новую эпоху в техники радиосвязи, обеспечив возможность радиоприема и телевизионного приема на ультракоротких волнах.

Интересные возможности предоставляет передача на сантиметровых, миллиметровых и субмиллиметровых волнах. Волны этой длины могут поглощаться атмосферой. Но, оказывается, имеются ”окна”, и, подобрав нужным образом длину волны, можно использовать волны, залезающие в оптический диапазон. Ну, а достоинства этих волн нам известны: в малой волновой интервал можно “вложить” огромное число не перекрывающихся передач.

1.3.Как распространяются радиоволны

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

Распространение длинных и коротких волн .

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.

Отражательные слои ионосферы и распространение коротких волн
в зависимости от частоты и времени суток .

Распространение коротких и ультракоротких волн .

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно
послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.

Параболические направленные антенны .

Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.

2. Диапазон

С учётом особенностей распространения, генерации и (отчасти) излучения весь диапазон радиоволн принято делить на ряд меньших диапазонов: сверхдлинные волны, длинные волны, средние волны, короткие волны, метровые волны, дециметровые волны, сантиметровые волны, миллиметровые волны и субмиллиметровые волны (табл. 1). Деление радиочастот на диапазоны в радиосвязи установлено международным регламентом радиосвязи (табл. 2). Все это официальные, четко отграниченные участки спектра.
В то же время термин "диапазон" в зависимости от контекста может применяться для обозначения какого-то произвольного участка радиоволн/радиочастот (например - "любительский диапазон", "диапазон подвижной связи", "диапазон low band", "диапазон 2,4 ГГц" и т.п.)

Табл. 1. - Деление всего диапазона радиоволн на меньшие диапазоны.

Название поддиапазона

Длина волны, м

Частота колебаний, гц

Сверхдлинные волны

более 10 4 м

менее 3x10 4

Длинные волны

Средние волны

Короткие волны

Метровые волны

Дециметровые волны

Сантиметровые волны

3x10 10 -3x10 11

Миллиметровые волны

3x10 11 -6x10 12

Субмиллиметровые волны

- - - - - - - - - - - - - -

Табл. 2.1. - Диапазон радиочастот

Наименование диапазона

Границы диапазонов

основной термин

параллельный термин

1-й диапазон частот
2-й диапазон частот
3-й диапазон частот
4-й диапазон частот
5-й диапазон частот
6-й диапазон частот
7-й диапазон частот
8-й диапазон частот
9-й диапазон частот
10-й диапазон частот
11-й диапазон частот
12-й диапазон частот

Крайне низкие КНЧ
Сверхнизкие СНЧ
Инфранизкие ИНЧ
Очень низкие ОНЧ
Низкие частоты НЧ
Средние частоты СЧ
Высокие частоты ВЧ
Очень высокие ОВЧ
Ультравысокие УВЧ
Сверхвысокие СВЧ
Крайне высокие КВЧ
Гипервысокие ГВЧ

3-30 гц
30-300 гц
0,3-3 кгц
3-30 кгц
30-300 кгц
0,3-3 Мгц
3-30 Мгц
30-300 Мгц
0,3-3 Ггц
3-30 Ггц
30-300 Ггц
0,3-3 Тгц

Табл. 2.2. - Диапазон радиоволн

Наименование диапазона

Границы диапазонов

основной термин

параллельный термин

1-й диапазон частот
2-й диапазон частот
3-й диапазон частот
4-й диапазон частот
5-й диапазон частот
6-й диапазон частот
7-й диапазон частот
8-й диапазон частот
9-й диапазон частот
10-й диапазон частот
11-й диапазон частот
12-й диапазон частот

Декамегаметровые
Мегаметровые
Гектокилометровые
Мириаметровые
Километровые
Гектометровые
Декаметровые
Метровые
Дециметровые
Сантиметровые
Миллиметровые
Децимиллиметровые

100-10 мм
10-1 мм
1000-100 км
100-10 км
10-1 км
1-0,1 км
100-10 м
10-1 м
1-0,1 м
10-1 см
10-1 мм
1-0,1 мм

2.1. Динамический диапазон
Динамический диапазон радиоприемного устройства - это отношение максимально допустимого уровня принимаемого сигнала (нормируется уровнем нелинейных искажений) к минимально возможному уровню принимаемого сигнала (определяется чувствительностью устройства) выраженное в децибелах. Другими словами - это разность между максимальным и минимальным значениями уровней сигналов, при которых еще не наблюдается искажений. Причиной этих искажений является нелинейность усилительного тракта рассматриваемого устройства. Чем шире ДД, тем более сильные сигналы способно принимать устройство без искажений. Динамический диапазон шире у дорогих приемников, хотя сравнивать их по этому параметру практически невозможно, т.к. он очень редко указывается в характеристиках.

2.2. Распределение спектра

Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазон
частот

Наименование диапазона
(сокращенное наименование)

Наименование
диапазона волн

Длина волны

Очень низкие частоты (ОНЧ)

Мириаметровые

Низкие частоты (НЧ)

Километровые

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

Высокие частоты (ВЧ)

Декаметровые

Очень высокие частоты (ОВЧ)

Метровые

300–3000 МГц

Ультра высокие частоты (УВЧ)

Дециметровые

Сверхвысокие частоты (СВЧ)

Сантиметровые

Крайне высокие частоты (КВЧ)

Миллиметровые

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.

Пример распределения спектра между различными службами .
Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Термин

Диапазон
частот

Пояснения

Коротковолновый
диапазон (КВ)

Из-за особенностей распространения в
основном применяется для дальней связи.

25.6–30.1 МГц

Гражданский диапазон, в котором могут
пользоваться связью частные лица. В
разных странах на этом участке выделено от
40 до 80 фиксированных частот (каналов).


Непонятно почему, но в русском языке не
нашлось термина, определяющего данный
диапазон.

136–174 МГц

Наиболее распространенный диапазон
подвижной наземной связи.

400–512 МГц

Диапазон подвижной наземной связи.
Иногда не выделяют этот участок в
отдельный диапазон, а говорят УКВ,
подразумевая полосу частот от 136 до
512 МГц.

806–825 и
851–870 МГц

Традиционный «американский» диапазон;
широко используется подвижной связью в
США. У нас не получил особого
распространения.



Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.
В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

3. Источники

3.1.Радиоизлучение Солнца. Зарегистрировано радиоизлучение Солнца с длиной волны от нескольких миллиметров до 30 м. Особенно сильно излучение в метровом диапазоне; оно рождается в верхних слоях атмосферы Солнца, в его короне, где температура порядка 1 млн. К. Коротковолновое излучение Солнца относительно слабо; оно выходит из хромосферы, расположенной над видимой поверхностью Солнца – фотосферой.

3.2.Галактические радиоисточники. Уже первые наблюдения Г.Ребера показали, что радиоизлучение Млечного Пути неоднородно – оно сильнее в направлении центра Галактики. Дальнейшие исследования подтвердили, что основные источники радиоволн относительно компактны; их называют точечными или дискретными. Зарегистрированы уже десятки тысяч таких источников.

Излучение космических радиоисточников бывает двух типов: тепловое и нетепловое (обычно синхротронное). Тепловое излучение рождается в горячем газе от случайного (теплового) движения заряженных частиц – электронов и протонов. Его интенсивность в широком диапазоне спектра почти постоянна, но на длинных волнах она быстро уменьшается. Такое излучение характерно для эмиссионных туманностей. Остальные источники имеют нетепловое излучение, интенсивность которого растет с увеличением длины волны. В этих источниках излучение возникает при движении очень быстрых электронов в магнитном поле. Скорости электронов близки к скорости света, и это не может быть следствием простого теплового движения. Для разгона электронов до таких скоростей в лаборатории используют специальные ускорители – синхротроны. Как это происходит в естественных условиях, не совсем ясно. Синхротронное излучение сильно поляризовано. Это позволяет обнаруживать его в космических источниках и по направлению поляризации определять ориентацию их магнитного поля. Таким методом исследованы межзвездные магнитные поля в нашей и соседних галактиках.

Одним из важнейших достижений радиоастрономии стало открытие активных процессов в ядрах галактик. Радионаблюдения указывали на это еще в 1950-е годы, но окончательное подтверждение появилось в 1962, когда с помощью 5-метрового оптического телескопа обсерватории Маунт-Паломар (США) были независимо обнаружены бурные процессы в ядре галактики М 82.

Другим важнейшим открытием радиоастрономии считаются квазары – очень далекие и активные внегалактические объекты. Вначале они казались рядовыми точечными источниками. Затем некоторые из них были отождествлены со слабыми звездами (отсюда название «квазар» – квазизвездный радиоисточник). Доплеровское смещение линий в их оптических спектрах указывает на то, что квазары удаляются от нас со скоростью, близкой к скорости света и, в соответствии с законом Хаббла, расстояния до них составляют миллиарды световых лет. Находясь на таких гигантских расстояниях, они заметны лишь потому, что излучают с огромной мощностью – порядка 10 41 Вт. Это значительно больше мощности излучения целой галактики, хотя размер области генерации энергии у квазаров существенно меньше размера галактик и порой не превосходит размера Солнечной системы. Загадка квазаров до сих пор не раскрыта.

3.3.Отождествление источников. Звезды – слабые источники радиоволн. Долгое время единственной звездой на «радионебе» было Солнце, и то лишь благодаря его близости. Но в 1970-х годах Р.Хелминг и К. Уэйд из Национальной радиоастрономической обсерватории США открыли радиоизлучение от газовых оболочек, сброшенных Новой Дельфина 1967 и Новой Змеи 1970. Затем они обнаружили радиоизлучение красного сверхгиганта Антареса и рентгеновского источника в Скорпионе.

В.Бааде и Р.Минковский из обсерваторий Маунт-Вилсон и Маунт-Паломар (США) отождествили многие яркие радиоисточники с оптическими объектами. Например, ярчайший источник в Лебеде оказался связан с очень далекой и слабой галактикой необычной формы, ставшей прототипом радиогалактик. Мощный радиоисточник в Тельце они отождествили с остатком взрыва сверхновой звезды, отмеченной в китайской летописи 1054. Мощный источник в Кассиопее также оказался остатком сверхновой, вспыхнувшей всего лет 300 назад, но не замеченной никем.

В 1967 Э.Хьюиш, Дж.Белл и их коллеги из Кембриджа (Англия) открыли необычные переменные радиоисточники – пульсары. Излучение каждого пульсара представляет строго периодическую последовательность импульсов; у открытых пульсаров периоды лежат в интервале от 0,0016 с до 5,1 с. Через 2 года У.Кокки, М.Дисней и Д.Тейлор обнаружили, что радиопульсар в Крабовидной туманности совпадает со слабой оптической звездой, которая, как и пульсар, изменяет свою яркость с периодом 1/30 с. Среди более 700 известных сейчас пульсаров еще только один – в созвездии Парусов (Vela) – демонстрирует оптические вспышки. Выяснилось, что феномен пульсара связан c нейтронными звездами, образовавшимися в результате гравитационного коллапса ядер массивных звезд. Имея диаметр около 15 км и массу как у Солнца, нейтронная звезда быстро вращается и как маяк периодически «освещает» Землю. Постепенно скорость вращения пульсара замедляется, период между импульсами возрастает, а их мощность падает. Иногда наблюдаются резкие сбои периода, когда у нейтронной звезды происходит перестройка структуры, называемая «звездотрясением».

3.4.Фоновое излучение. Кроме отождествленных и неотождествленных дискретных источников, наблюдается суммарный фон от миллионов далеких галактик и облаков межзвездного газа нашей Галактики. С повышением чувствительности и разрешающей способности радиотелескопов из этого фона удается выделить все больше дискретных источников.

3.5.Радиоизлучение планет. В 1956 К.Мейер из Военно-морской лаборатории США открыл излучение Венеры на волне 3 см. В 1955 Б.Бурке и К.Франклин из института Карнеги в Вашингтоне обнаружили короткие всплески радиоизлучения от Юпитера на волне 13,5 м. Дальнейшие исследования в Австралии показали, что всплески излучения от Юпитера приходят в те моменты, когда определенные зоны его поверхности обращены к Земле. В дециметровом диапазоне кроме теплового излучения наблюдалось и синхротронное, что указывало на наличие у Юпитера мощного магнитного поля, которое позже было действительно обнаружено космическими зондами.

Радиолокационные исследования планет позволяют точно определять их расстояние от Земли, скорость их суточного вращения и свойства поверхности. Радиолокация Венеры позволила изучить топографию ее поверхности, закрытой от оптических телескопов плотным облачным слоем.

3.6.Излучение водорода. Нейтральный атомарный водород – возможно, самый распространенный элемент в межзвездном пространстве. Он способен излучать радиолинию с длиной волны 21 см, которая была предсказана в 1944 нидерландским теоретиком Х. ван де Хюлстом и обнаружена в 1951 Х.Юэном и Э.Парселом из Гарвардского университета (США). Существование узкой линии в радиодиапазоне оказалось очень полезным: измеряя ее доплеровское смещение, можно очень точно определять лучевую скорость наблюдаемого облака газа. При этом приемная аппаратура радиотелескопа сканирует некоторый диапазон длин волн в районе линии 21 см и отмечает пики излучения. Каждый такой пик – это линия излучения водорода, смещенная по частоте из-за движения одного из облаков, попавших в поле зрения антенны телескопа.

Около 5% водорода в Галактике вследствие высокой температуры находится в ионизованном состоянии. Когда свободные электроны пролетают вблизи положительно заряженных ядер водорода – протонов, они испытывают притяжение, движутся ускоренно и при этом излучают электромагнитные кванты. Иногда, потеряв энергию, электрон оказывается захваченным на один из верхних уровней атома (т.е. происходит рекомбинация). Спускаясь затем каскадно на устойчивый нижний уровень, электрон также излучает кванты энергии. Такое излучение свободных и рекомбинирующих электронов наблюдается в радиодиапазоне от эмиссионных туманностей и позволяет обнаруживать их даже в тех случаях, когда оптическое излучение не может достичь Земли из-за поглощения в межзвездной пыли. Благодаря этому радиоастрономы смогли обнаружить практически все эмиссионные туманности в Галактике.

4. Открытие и применение

Открытие радиоволн дало человечеству массу возможностей. Среди них: радио, телевидение, радары, радиотелескопы и беспроводные средства связи. Всё это облегчало нам жизнь. С помощью радио люди всегда могут попросить помощи у спасателей, корабли и самолёты подать сигнал бедствия, и можно узнать происходящие события в мире.

Гипотезу о существовании радиоволн выдвинул английский учёный Джеймс Максвелл на основании изучения работ Фарадея по электричеству. Для выдвижения гипотезы о возможности возникновения электромагнитных волн Максвелл имел следующие основания. Открытие индукционного тока Фарадеем. Максвелл объяснил появление индукционного тока возникновением вихревого электрического поля при любом изменении магнитного поля. Далее он предложил, что электрическое поле обладает такими же свойствами: при любом изменении электрического поля в окружающем пространстве возникает вихревое электрическое поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического поля должен непрерывно продолжаться и захватывать Схема Радиоволны.

всё новые и новые области в окружающем пространстве. Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях. Электрические и магнитные поля могут существовать в веществе и в вакууме, и могут распространяться в вакууме. Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов. Так, изменение магнитного поля происходит при изменении тока в проводнике, а изменение тока происходит при изменении скорости зарядов. Следовательно, электромагнитные волны должны возникать при ускоренном движении электромагнитных зарядов.

Но вот создание электромагнитных волн опытным путём принадлежит физику Герцу. Для этого Герц использовал высокочастотный искровой разрядник (Вибратор). Произвёл этот опыт Герц в 1888 г. Состоял вибратор из двух стержней, разделённых искровым промежутком. Экспериментировал Герц с волнами частотой 100000000 Гц. Вычислив собственную частоту электромагнитных колебаний вибратора, Герц смог определить скорость электромагнитной волны по формуле υ=λν.Она оказалась приближенно равна скорости света: с=300000 км/с. Опыт Герца блестяще подтвердили предсказания Максвелла. Для возбуждения колебаний вибратор подключался к индуктору. Когда напряжение на искровом промежутке достигало пробивного значения, возникла искра, которая закорачивала обе половинки вибратора. В результате возникали свободные затухающие колебания, которые продолжались до тех пор, пока искра не гасла. А для того чтобы возникающий при колебаниях высокочастотный ток не ответвлялся в обмотку индуктора, между вибратором и индуктором включались дроссели (катушки с большой индуктивностью). После погасания искры вибратор снова заряжался от индуктора, и весь процесс повторялся вновь. Таким образом, вибратор Герца возбуждал ряд цугов слабо затухающих волн.

И во время этих колебаний устанавливалась стоячая волна тока и напряжения. Сила тока I была максимальной (пучность) в середине вибратора и обращалась в ноль на его концах. Напряжение U в середине вибратора имело узел, на концах – пучности. Опыты Герца были продолжены П. Н. Лебедевым в 1894 г. П.Н. Лебедев открыл двойное преломление волн в кристалле. Также радиоволны обладают всеми основными свойствами волн.

Электромагнитные волны в зависимости от длины волны (или частоты колебаний

Несмотря на то, что свойства электромагнитных волн различных диапазонов могут резко отличаться друг от друга, все они имеют единую волновую природу и описываются системой уравнений Максвелла. Величины и в электромагнитной волне в простейшем случае меняются по гармоническому закону. Уравнениями плоской электромагнитной волны, распространяющейся в направлении Z, являются:

где n-частота,

Электромагнитные волны являются поперечными волнами, т.е. колебания векторов напряженности переменного электрического и индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости распространения волны. Векторы и образуют правовинтовую систему: из конца вектора поворот от к на наименьший угол виден происходящем против часовой стрелки (рис. 1).

На рис. 2 показано распределение векторов и электромагнитной волны вдоль оси OZ в данный момент времени t.

Из формулы (1) следует, что вектора и в электромагнитной волне колеблются в одинаковой фазе (синфазно), т.е. они одновременно обращаются в нуль и одновременно достигают максимальных значений.

Основываясь на том, что электромагнитная волна является поперечной, возможно наблюдение явлений, связанных с определенной ориентацией векторов и в пространстве. Благодаря этим свойствам возможно использовать электромагнитные волны в радиосвязи.

Первым кто применил радиоволны для беспроводной связи, был русский физик А. Попов. 7 мая 1895 г. Попов с помощью электромагнитных волн передал на расстояние 250 м сообщение (были переданы слова «Генрих Герц»). Для приёма сообщений Попов использовал способность металлических порошков слипаться под влиянием высокочастотных электрических колебаний и тем самым повышать свою электропроводность. Передатчиком служила заземлённая антенна А. В схеме передатчика В – источник высокого переменного напряжения, питаемый батареей Е. При замыкании ключа К в искровом промежутке образуется искра, представляющая собой колебательный процесс, вследствие чего антенна Передатчик и приёмник..

А начинает излучать радиоволны. Эти волны, достигая антенны А’ приёмной станции, возбуждают электромагнитные колебания цепи, содержащей заземлённую антенну и когерер Т. Сопротивление когерера резко уменьшается, вследствие чего замыкается цепь батареи Е’, в которой находится электромагнитное реле, притягивающее молоточек F. При этом в точке О замыкается цепь более мощной батареи Е”, действующей на пишущий аппарат LM. В тоже время молоточек D ударяет по когереру Т и размыкает цепь батареи Е’ (для приёма следующего сигнала).

Это радио стало прародителем не только для современного радио, но и для телевизоров, радиотелескопов, мобильных телефонов и для многих других вещей без которых люди не могут представить сегодняшнюю свою жизнь.

Современные радиоприёмники совсем непохожи на своего прародителя, но принцип действия остался тот же, что и в приёмники Попова. Современный приёмник так - же имеет антенну, в которой приходящая волна вызывает очень слабые магнитные колебания. Как и в приёмнике Попова, энергия этих колебаний не используется непосредственно для приёма. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

В1899 году была обнаружена возможность приёма сигналов с помощью телефона. В начале 1900 года радиосвязь была успешно использована во время спасательных работ в Финском заливе. При участии Попова началось внедрение радиосвязи на флоте и в армии России.

За границей усовершенствованием подобных приборов занималась фирма, организованная итальянским учёным Маркони. Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через атлантический океан.

Важнейшим этапом развития радиосвязи было создание в 1913 году генератора незатухающих электромагнитных колебаний.

Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов электромагнитных волн, стала возможной надёжная и высококачественная радиотелефонная связь – передача речи и музыки с помощью электромагнитных волн.

При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы. Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояния речь и музыку с помощью электромагнитных волн. Однако в действительности такой способ передачи неосуществим.

Дело в том что, колебания звуковой частоты представляют собой сравнительно медленные колебания, а электромагнитные волны низкой

(звуковой) частоты почти совсем не излучаются.

Для передачи этих волн на большие расстояния их необходимо преобразовать в колебания высокой частоты, но так чтобы не испортить информацию которую они несут. Процесс преобразования электромагнитных колебаний низкой частоты в колебания высокой частоты называется модуляцией. Для преобразования звуковых волн используется амплитудная модуляция.

В процессе модуляции происходит наложение амплитуды низкочастотных сигналов на высокочастотный сигнал.

Модуляция – медленный процесс. Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда измениться заметным образом.

Без модуляции нет ни телеграфной, ни телефонной, ни телевизионной передачи.

Для осуществления амплитудной модуляции электромагнитных колебаний высокой частоты в электрическую цепь транзисторного генератора последовательно с колебательным контуром включают катушку трансформатора. На вторую катушку трансформатора подаётся переменное напряжение звуковой частоты, например, с выхода микрофона после необходимого усиления. Переменный ток во второй катушке трансформатора вызывает появление напряжения на концах первой катушке трансформатора.

Переменное напряжение звуковой частоты складывается с постоянным напряжением источника тока; изменения напряжения между эмиттером и коллектором транзистора приводят к изменениям со звуковой частотой амплитуды колебаний силы тока высокой частоты в контуре генератора. Такие колебания высокой частоты называются амплитудно-модулированными.

С колебательным контуром генератора индуктивно связана антенна радиопередатчика. Вынужденные колебания тока высокой частоты, происходящие в антенне, создают электромагнитные волны.

Электромагнитные волны, излучённые антенной радиопередатчика, вызывают вынужденные колебания свободных электронов в любом проводнике. Напряжение между концами проводника, в котором электромагнитная волна возбуждает вынужденные колебания электрического тока, пропорционально длине проводника. Поэтому для приёма электромагнитных волн в простейшем детекторном радиоприёмнике применяется длинный провод – приёмная антенна (1). Для того чтобы слушать только одну радиопередачу, колебания напряжения не направляют непосредственно на вход усилителя, а сначала подают на колебательный контур (2) с изменяющейся собственной частотой колебаний. Изменение собственной частоты колебаний в контуре приёмника производится обычно изменением электроёмкости переменного конденсатора. При совпадении частоты вынужденных колебаний в антенне с собственной частотой контура наступает резонанс, при этом амплитуда вынужденных колебаний напряжения на обкладках конденсатора контура достигает максимального значения. Таким образом, из большого числа электромагнитных колебаний, возбуждаемых в антенне, выделяются колебания нужной частоты.

С колебательного контура приёмника модулированные колебания высокой частоты поступают на детектор (3). В качестве детектора можно использовать полупроводниковый диод, пропускающий переменный ток высокой частоты только в одном направлении. В течении каждого полупериода высокой частоты импульсы тока заряжают конденсатор (4), вместе с тем конденсатор медленно разряжается через резистор (5). Если значения электроёмкости конденсатора и электрического сопротивления резистора выбраны правильно, то через резистор будет протекать ток, изменяющийся во времени со звуковой частотой, использованной при модуляции колебаний в радиопередатчике. Для преобразования электрических колебаний в звуковые переменное напряжение звуковой частоты подаётся на телефон (6).

Детекторный радиоприёмник весьма несовершенен. Он обладает очень низкой чувствительностью и поэтому может успешно принимать радиопередачи только от мощных радиостанций или от близкорасположенных радиопередатчиков.

Для повышения чувствительности в современных радиоприёмниках сигнал с колебательного контура поступает на вход усилителя высокой частоты (УВЧ), а с выхода усилителя высокочастотные электрические колебания поступают на детектор. Для увеличения мощности звукового сигнала на выходе радиоприёмника электрические колебания звуковой частоты с выхода детектор поступают на вход усилителя низкой частоты.

Переменное напряжение звуковой частоты с выхода УНЧ подаётся на динамик.

Для усиления электрических колебаний высокой и низкой частот могут быть использованы схемы с электронными лампами или транзисторами.

Благодаря радиоволнам познается, и наша вселенная, и открываются элементарные частицы материи. Даже живые существа испускают радиоволны, а животные такие животные, как рыба молот используют их для охоты.

Библиография

1. Гаевой А. И., Калабухов Н. П., Левашова Л. Е., Чепуренко В. Г. «Справочник по физике для поступающих в вузы». Киев, «Наукова Думка», 1986.

2. И. В. Савельев «Курс общей физики» том 2. Москва, «Наука», 1973.

3. Михайличенко Ю.П. «Двойное лучепреломление сантиметровых электромагнитных волн. Методические указания». Томск, 1986.

4. Першинзон Е.М., Малов Н.Н., Эткин В.С. «Курс общей физики. Оптика и атомная физика». Москва, Просвещение, 1981.

5. Физика 11 Г. Я. Мякишев Б. Б. Буховцев.

СОДЕРЖАНИЕ 1. Что такое радиоволны? 3 1.1. Радиоволны 3 1.2. Распростран